The Impact of Halloysite on the Thermo-Mechanical Properties of Polymer Composites.

نویسندگان

  • Tayser Sumer Gaaz
  • Abu Bakar Sulong
  • Abdul Amir H Kadhum
  • Ahmed A Al-Amiery
  • Mohamed H Nassir
  • Ahed Hameed Jaaz
چکیده

Nanotubular clay minerals, composed of aluminosilicate naturally structured in layers known as halloysite nanotubes (HNTs), have a significant reinforcing impact on polymer matrixes. HNTs have broad applications in biomedical applications, the medicine sector, implant alloys with corrosion protection and manipulated transportation of medicines. In polymer engineering, different research studies utilize HNTs that exhibit a beneficial enhancement in the properties of polymer-based nanocomposites. The dispersion of HNTs is improved as a result of pre-treating HNTs with acids. The HNTs' percentage additive up to 7% shows the highest improvement of tensile strength. The degradation of the polymer can be also significantly improved by doping a low percentage of HNTs. Both the mechanical and thermal properties of polymers were remarkably improved when mixed with HNTs. The effects of HNTs on the mechanical and thermal properties of polymers, such as ultimate strength, elastic modulus, impact strength and thermal stability, are emphasized in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis

A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

Effect of Redmud Particulates on Mechanical Properties of BFRP Composites (TECHNICAL NOTE)

This article reports the effective usage of redmud(RM) an industrial waste ,as a  novel filler in polymer matrix. The composite has been fabricated with redmud as secondary reinforcement in banana fiber reinforced polyester (BFRP) using compression molding technique. The mechanical properties such as tensile, flexural and impact strength have been studied for different fiber weight percentage, ...

متن کامل

In-Situ Polymerization of UHMWPE Using Bi-Supported Ziegler-Natta Catalyst of MoS2 Oxide/MgCl2 (Ethoxide Type)/TiCl4/TiBA: Study of Thermo-Mechanical Properties of System

The use of UHMWPE has attracted the attention of many researchers and industries. The aim of the present work is to fabricate UHMWPE/MoS2-Oxide nano-composites using in-situ polymerization. For this purpose, modified molybdenum disulfide was used. In order to perform the polymerization, a Ziegler-Natta catalytic system, with MoS2-Oxide and magnesium Ethoxide as support, was used. In order to fa...

متن کامل

Environmental effects on mechanical properties of glass/epoxy and fiber metal laminates, Part II: Isothermal aging

The aim of this study is to investigate effects of isothermal aging on mechanical properties of fiber metal laminates (FMLs) and glass/epoxy composites. For this purpose, both materials were fabricated using the wet lay-up manufacturing technique under vacuum pressure. Both the glass/epoxy composites and the FML specimens were then subjected to isothermal aging (130°C, dried air) for up to 5 we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2017